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1 Introductions

Fuzzy sets were introduced in 1965 by Lotfi Zadeh [20] with a view to reconsile mathematical
modeling and human knowledge in the engineering science. Since then, a considerable body of
literature has blossomed arround the concepts of fuzzy sets in an incredibly wide range of areas,
from mathematics and logics to traditional and advanced engineering methodologies (from civil
engineering to computational intelligence). Applications are found in many contexts, from medicine
to finance, from human factors to consumer products...Fuzzy logic is now currently used in the
industrial practice of advanced information technology.

Recently, the industrial interest in fuzzy control and logic [3] has dramatically increased the
study of fuzzy systems. The calculus of fuzzy - valued functions has been initiated [4, 5, 6, 9,
16] and the study of the initial value problems for fuzzy differential equations has been initiated
in [1, 2, 7, 8, 12, 13]. The existence and uniqueness of solutions of fuzzy differential equations is
considered by some authors [12, 13, 14, 18]. The extension of solutions were given in [21] and the
global existence of solutions were given in [17].

The investigation of stability of solutions is the most important problem in the qualitative
theory of differential equations. It has been widely applied in Physic, Mechanic, Control,...

In this paper, we study the stability theory which corresponds to Lyapunov stability theory
for fuzzy differential equations. By using differential inequalities and comparison principle, somes
sufficient conditions for the stability of solutions of fuzzy differential equations were estimated.

2 Preliminaries

Let PK(Rn) denotes the familiy of all non-empty compact, convex subsets of Rn and define the
addition and scalar multiplication in PK(Rn) as usual. Let A,B are two non-empty subsets in Rn.
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2 L.V. Hien

The distance between A and B is defined by Haussdorff metric:

dH(A,B) = max[sup
a∈A

inf
b∈B

‖a− b‖, sup
b∈B

inf
a∈A

‖a− b‖]

where ‖.‖ denotes a norm in Rn. Then it is clear that (PK(Rn), dH) becomes a metric space.
Moreover, the metric space (PK(Rn), dH) is complete and separable (see [15]). Let T = [a; b], a ≥ 0
be a interval in R and denote εn = {u : Rn −→ [0; 1]|u satisfies (i) to (iv) below }.

(i) u is normal, that is, there exists x0 ∈ R
n such that u(x0) = 1;

(ii) u is fuzzy convex, that is, for x, y ∈ Rn and 0 ≤ λ ≤ 1:

u(λx+ (1− λ)y) ≥ min[u(x), u(y)];

(iii) u is upper semi-continuous;

(iv) [u]0 = {x ∈ Rn : u(x) > 0} is compact subset in Rn;

For 0 < α ≤ 1, we denote [u]α = {x ∈ Rn : u(x) ≥ α}, then from (i) to (iv), it follow that the
α−level [u]α ∈ PK(Rn) for all α ∈ [0; 1]. For later purpose, we define ô ∈ εn as ô(x) = χ{0}(x) = 1
if x = 0 and ô(x) = 0 if x 
= 0. Define a metric function d : εn × εn −→ R+ by

d[u, v] = sup
0≤α≤1

dH([u]α, [v]α)

then (εn, d) becomes a complete metric space (see [12, 15]). We list here some properties of metric
d[u, v] (see [7, 12, 14, 15]).

(i) d[u,w] ≤ d[u, v] + d[v, w];

(ii) d[λu, λv] = |λ|d[u, v];

(iii) d[u+ w, v + w] = d[u, v], u, v, w ∈ εn, λ ∈ R;

For x, y ∈ εn, if there exists z ∈ εn such that x = y+ z then z is called H-difference of x and y and
is denoted by x− y.

A mapping F : T −→ εn is differentiable at t0 ∈ T if for small h > 0, there exist H-differences
F (t0 + h)− F (t0);F (t0)− F (t0 − h) and there exists a F ′(t0) ∈ ε

n such that the limits

lim
h→0+

F (t0 + h)− F (t0)

h
; lim
h→0+

F (t0)− F (t0 − h)

h

exist and equal F ′(t0). If F,G differentiable at t then (F +G)′(t) = F ′(t) + G′(t) and (λF )′(t) =
λF ′(t), λ ∈ R (see [7, 12, 16]).

If F : T −→ εn is strongly measurable and integrably bounded then it is integrable on T

and
∫
T
F (t)dt ∈ εn,

[

∫

T

F (t)dt]α =

∫

T

Fα(t)dt, 0 < α ≤ 1;Fα(t) = [F (t)]α.

where
∫
T
Fα(t)dt is Aumann integral. It is wellknown that [

∫
T
F (t)dt]0 =

∫
T
F0(t)dt (see [7],

Remark 4.1). Also the following properties of integral are valid (see [5, 6, 7, 12]). If F,G : T −→ εn

be integrable on T and λ ∈ R then:
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(i)
∫
T
(F +G)(t)dt =

∫
T
F (t)dt+

∫
T
G(t)dt;

(ii)
∫
T
(λF )(t)dt = λ

∫
T
F (t)dt;

(iii) d[F (.), G(.)] : T −→ R+ is integrable;

(iv) d[
∫
T
F (t)dt,

∫
T
G(t)dt] ≤

∫
T
d[F (t),G(t)]dt;

(v)
∫ b
a
F (t)dt =

∫ c
a
F (t)dt+

∫ b
c
F (t)dt, a ≤ c ≤ b;

If F is continuous then G(t) =
∫ t
a
F (τ )dτ is differentiable on T and G′(t) = F (t), ∀t ∈ T . Moreover,

if F is differentiable on T and F ′(.) is integrable on T then for all t ∈ T we have F (t) = F (t0) +∫ t
t0
F (τ )dτ, a ≤ t0 ≤ t ≤ b. If F is continuous on T and G(t) =

∫ t
a
F (τ)dτ then for t1 ≤ t2 we have

(see [7])
d[G(t1), G(t2)] ≤ (t2 − t1) sup

[t1,t2]

d[F (t), ô]

3 Stability

Consider fuzzy differential equation:

dx

dt
= f(t, x), x(t0) = x0 (3.1)

where f ∈ C[R+ × S(ρ), εn], S(ρ) = {x ∈ εn : d[x, ô] < ρ}, f(t, ô) ≡ ô. Hence, equation (3.1) has
trivial solution x = ô.

In this section, we shall discuss the stability, especially, asymptotically stability of solutions
of Eq(3.1) by Lyapunov’s second method. First, we give some notions of stability which are
used in the sequel. Let x(t) = x(t; t0, x0) be any solution of (3.1) existing on [t0,∞). Denote
K = {a ∈ C[R+,R+], a(0) = 0, a(.) is increasing}.

Definition 1. The trivial solution x = ô of (3.1) is stable if for any ε > 0, t0 ∈ R+, there exists a
δ = δ(t0, ε) > 0 such that if d[x0, ô] < δ then d[x(t), ô] < ε, ∀t ≥ t0.

If the δ in the above definition is independent of t0 then x = ô is said to be uniformly stable.

Definition 2. The trivial solution x = ô of (3.1) is asymptotically stable if x = ô is stable and for
any t0 ∈ R+, there exists a ∆ = ∆(t0) > 0 such that if d[x0, ô] < ∆ then lim

t→∞
d[x(t; t0, x0), ô] = 0.

Definition 3. The trivial solution x = ô of (3.1) is uniformly asymptotically stable if it is uni-
formly stable and there exists a δ0 > 0 such that for any ε > 0, there exist T (ε) ≥ 0 such that if
d[x0, ô] < δ0, t0 ∈ R+ then

d[x(t; t0, x0), ô] < ε, ∀t ≥ t0 + T (ε)

Definition 4. The trivial solution x = ô is exponentially stable if any solution x(t) = x(t; t0, x0)
of (3.1) satisfies:

d[x(t), ô] ≤ β(d[x0, ô], t0)e
−α(t−t0), t ≥ t0

where β(h, t) : [0, H) × R+ −→ R+ increasing in h ∈ [0,H) for some H > 0 and α is a positive
constant. If H =∞ then x = ô is called global exponentially stable.

If the function β(., .) does not depend on t0 then x = ô is called uniformly exponentially stable.

Before prove the stability of solutions of (3.1), we need the following Lemma (see [11, 19]
for details).



4 L.V. Hien

Lemma 3.1. Let g(t, x) be a continuous function on R2+ and r(t) = r(t; t0, w0), r(t0) = w0 be the
maximal solution of the scalar differential equation:

w′ = g(t, w) (3.2)

existing on [t0,∞). Let m(t) be a continuous function on R+ satisfies

d+m(t) = lim sup
h→0+

m(t+ h)−m(t)

h
≤ g(t,m(t)), t ≥ t0

Then m(t) ≤ r(t), ∀t ≥ t0 if m(t0) ≤ w0.

Let V (t, x) : R+ × S(ρ) −→ R be a given function. Then we define

D+
f V (t, x) = lim sup

h→0+

1

h
[V (t+ h, x+ hf(t, x))− V (t, x)]

where f(.) is the right-hand side of (3.1) and D+
f V is called the upper derivation of V (t, x) along the

trajectory of (3.1). Let x(t) be a solution of (3.1) then d+V (t, x(t)) donotes the upper derivation
of V (t, x(t)), i.e.

d+V (t, x(t)) = lim sup
h→o+

1

h
[V (t+ h, x(t+ h))− V (t, x(t))]

Note that, if V (t, x) is Lipchitzian in x then we have d+V (t, x(t)) ≤ D+
f V (t, x(t)).

Theorem 3.1. Suppose that there exists a function V (t, x) satisfies the following conditions:

(i) |V (t, x)− V (t, y)| ≤ L(t)d[x, y], ∀(t, x), (t, y) ∈ R+ × S(ρ), L(.) ∈ C[R+,R+];

(ii) a(d[x, ô]) ≤ V (t, x), V (t, ô) = 0, where a(.) ∈ K class;

(iii) D+
f V (t, x) ≤ g(t, V (t, x)), g(., .) ∈ C[R2+,R]; g(t, 0) = 0;

If the solution w = 0 of the equation in the form (3.2) is stable (asymptotically stable) then the
trivial solution x = ô of (3.1) is stable (asymptotically stable).

Proof. Let x(t) = x(t; t0, x0), t0 ∈ R+ be any solution of Eq(3.1) existing on [t0,∞) and solution
w = 0 of (3.2) is stable. Then, for any 0 < ε < ρ, exists a δ0 = δ0(t0, ε) > 0 such that if 0 ≤ w0 < δ0
then |w(t; t0, w0)| < a(ε), ∀t ≥ t0. From (ii), it follows that there exists δ = δ(t0, ε) > 0 such that
V (t0, x) < δ0 if d[x, ô] < δ. We will show that if d[x0, ô] < δ then d[x(t), ô] < ε, ∀t ≥ t0.

Suppose that d[x(t), ô] ≥ ε for some t∗ > t0 then there exists a t1 > t0 such that

d[x(t1), ô] = ε; d[x(t), ô] < ε, ∀t ∈ [t0, t1)

Let m(t) = V (t, x(t)), t ≥ t0 then we have:

m(t+ h)−m(t) = V (t+ h, x(t+ h))− V (t, x(t))

= V (t+ h, x(t+ h))− V (t+ h, x(t) + hf(t, x(t))) +

+ V (t+ h, x(t) + hf(t, x(t)))− V (t, x(t))

≤ L(t+ h)d[x(t+ h), x(t) + hf(t, x(t))] +

+ V (t+ h, x(t) + hf(t, x(t)))− V (t, x(t)).



Exponential stabiltiy of fuzzy differential equations 5

For small h > 0, H-differences of x(t+ h) and x(t) is assumed to exsit. Let x(t+ h) = x(t) + z(t)
and using the properties of metric d[x, y] we have:

d[x(t+ h), x(t) + hf(t, x(t))] = hd[
x(t+ h)− x(t)

h
, f(t, x(t))]

Hence

d+m(t) = lim sup
h→0+

1

h
[m(t+ h)−m(t)]

≤ L(t) lim sup
h→0+

d[
x(t+ h)− x(t)

h
, f(t, x(t))] +

+ lim sup
h→0+

1

h
[V (t+ h, x(t) + hf(t, x(t)))− V (t, x(t))] =

= L(t)d[x′(t), f(t, x(t))] +D+
f V (t, x(t)) = D+

f V (t, x(t))

≤ g(t,m(t)), t0 ≤ t ≤ t1.

Applying Lemma 3.1, m(t) ≤ r(t; t0, w0), w0 = V (t0, x0), t ∈ [t0, t1].
On the other hand, V (t0, x0) < δ0, so, r(t; t0, w0) < a(ε), t ∈ [t0, t1] and therefore

m(t1) ≤ r(t1; t0, w0) < a(ε)

By the choice of t1, we have a(ε) = a(d[x(t1), ô]) ≤ V (t1, x(t1)) = m(t1) < a(ε). This is a
contradiction, hence

d[x(t), ô] < ε, ∀t ≥ t0

This shows that the trivial solution x = ô of (3.1) is stable.

If w = 0 of (3.2) is asymptotically stable then it’s stable, therefore x = ô of (3.1) is stable.
For t0 ∈ R+, there exist δ = δ(t0) > 0,∆1(t0) > 0 such that d[x(t), ô] < ρ, ∀t ≥ t0 if d[x0, ô] < δ

and if 0 ≤ w0 < ∆1(t0) then lim
t→∞

w(t; t0, w0) = 0. From hypothesises of function V (t, x), we can

find a ∆2 > 0 such that if d[x, ô] < ∆2 then V (t0, x) < ∆1(t0). Put ∆ = min[δ,∆2]. Let x(t) be
any solution of (3.1), t0 ∈ R+, d[x0, ô] < ∆. Define m(t) = V (t, x(t)), t ≥ t0. By the first part of
this proof we see that d+m(t) ≤ g(t,m(t)). Apply Lemma 3.1,

m(t) ≤ r(t; t0, w0), w0 = V (t0, x0), t ≥ t0

Since w0 = V (t0, x0) < ∆1(t0), so lim
t→∞

r(t; t0, w0) = 0.

From a(d[x(t), ô]) ≤ V (t, x(t)) = m(t) ≤ r(t; t0, w0), a(.) ∈ K, it follows that lim
t→∞

d[x(t), ô] = 0.

This shows that x = ô is asymptotically stable. The proof is completed.

Theorem 3.2. Suppose that there exists a function V (t, x) satisfies:

(i) |V (t, x)− V (t, y)| ≤ L(t)d[x, y], ∀(t, x), (t, y) ∈ R+ × S(ρ), L(.) ∈ C[R+,R+];

(ii) a(d[x, ô]) ≤ V (t, x) ≤ b(d[x, ô]), a(.), b(.) ∈ K;

(iii) D+
f V (t, x) ≤ g(t, V (t, x)), g ∈ C[R2+,R]; g(t, 0) = 0;

If the solution w = 0 of (3.2) is uniformly stable (uniformly asymptotically stable) then the trivial
solution x = ô of (3.1) is uniformly stable (uniformly asymptotically stable).
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Proof. If solution w = 0 of (3.2) is uniformly stable then for any ε > 0 there exists δ0 > 0 such
that if t0 ∈ R+ and 0 ≤ w0 < δ0 then |w(t; t0, w0)| < a(ε), ∀t ≥ t0. By choosing a δ = δ(ε) > 0
such that b(δ) < a(δ0) and by the same argument in the proof of Theorem 3.1, it can be proved
that if d[x0, ô] < δ then d[x(t; t0, x0), ô] < ε, t ≥ t0. This shows that x = ô is uniformly stable.

Now, we assume w = 0 is uniformly asymptotically stable, then by the first part of this
proof, the trivial solution x = ô is uniformly stable. Hence, there exists δ0 > 0 such that, t0 ∈
R+, d[x0, ô] < δ0 implies d[x(t; t0, x0), ô] < ρ,∀t ≥ t0. Moreover, there exists δ1 > 0 such that for
any ε > 0, exists T = T (ε) ≥ 0 such that if t0 ≥ 0, 0 ≤ w0 < δ1 then |w(t; t0, w0)| < a(ε), ∀t ≥
t0 + T . Put δ = min[δ0, b

−1(δ1)]. By the same argument in the proof of Theorem 3.1, it can be
proved that, if d[x0, ô] < δ then d[x(t; t0, x0), ô] < ε, ∀t ≥ t0 + T (ε). This shows that x = ô is
uniformly asymptotically stable. The proof is completed.

Example 3.1. Consider a fuzzy- valued function f(t, x) which satisfies

d[f(t, x), ô] ≤ a(t)d[x, ô];

∫ ∞

0

a(t)dt <∞

(for example f(t, x) =
1

1 + t2
x, a(t) =

1

1 + t2
satisfies all the above conditions).

Then the trivial solution x = ô of (3.1) is uniformly stable.

Proof. Consider a Lyapunov function V (t, x) = d[x, ô].

Then
1

2
d[x, ô] ≤ V (t, x) ≤ 2d[x, ô] and |V (t, x) − V (t, y)| ≤ d[x, y], ∀(t, x); (t, y) ∈ R+ × εn. For

h > 0, we have:

V (t+ h, x+ hf(t, x)) = d[x+ hf(t, x), ô]

≤ d[x, ô] + hd[f(t, x), ô]

≤ d[x, ô] + ha(t)d[x, ô]

Hence, D+
f V (t, x) ≤ a(t)d[x, ô] = g(t, V (t, x)), where g(t, w) = a(t)w. It’s easy to show that the

solution w = 0 of (3.2) is uniformly stable, so by Theorem 3.2, the trivial solution x = ô of (3.1)
is uniformly stable.

Theorem 3.3. Suppose that:

(i) f(t, x) is bounded on R+ × S(ρ);

(ii) ∃V (t, x) satisfies |V (t, x)− V (t, y)| ≤ L(t)d[x, y]; a(d[x, ô]) ≤ V (t, x) ≤ a0(t, d[x, ô]),
where a(.) ∈ K, a0(t, .) ∈ K for each t ∈ R+;

(iii) D+
f V (t, x)+V ∗(t, x) ≤ g(t, V (t, x)), where g ∈ C[R+×R,R], g(t, .) is non-decreasing for each

t ∈ R+ and V ∗ ∈ C[R+ × S(ρ),R+], V
∗(t, x) ≥ c(d[x, ô]), c(.) ∈ K.

If solution w = 0 of (3.2) is stable then the trivial solution x = ô of (3.1) is asymptotically stable.

Proof. By Theorem 3.1, the trivial solution x = ô is stable. Hence, for t0 ∈ R+, there exists δ1(t0)
such that d[x0, ô] < δ1 implies d[x(t; t0, x0), ô] < ρ, ∀t ≥ t0. Moreover, for t0 ∈ R+, there exists
δ2(t0) > 0 such that if 0 ≤ w0 < δ2(t0) then |r(t; t0, w0)| < ρ,∀t ≥ t0, where r(t; t0, w0) is the
maximal solution of (3.2). Since a0(t0, .) ∈ K, there exists δ3(t0) > 0 such that a0(t0, δ3) < δ2(t0).
Put δ = δ(t0) = min{δ1, δ2, δ3}. Let x(t) = x(t; t0, x0) be any solution of (3.1), d[x0, ô] < δ. We
will show that

lim
t→∞

d[x(t), ô] = 0
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Suppose that lim sup
t→∞

d[x(t), ô] > 0. Then there exists η > 0 and a sequence {tn} → ∞ such that

d[x(tn), ô] ≥ η, n = 0, 1, 2, . . .

By the boundedness of f(t, x) and by taking a subsequence of {tn}, we can assume that there exist

M > 0, {tn} → ∞ such that tn+1 − tn ≥
η

2M
,n ≥ 0.

For t ∈ [tn, tn +
η

2M
], we have x(t) = x(tn) +

∫ t
tn
f(τ, x(τ ))dτ . Hence

d[x(t), ô] ≥ d[x(tn), ô]−

∫ t

tn

d[f(τ, x(τ )), ô]dτ ≥ η −M
η

2M
=
η

2
.

Define m(t) = V (t, x(t)) +
∫ t
t0
V ∗(τ, x(τ ))dτ, t ≥ t0. Then:

d+m(t) ≤ D+
f V (t, x(t)) + V ∗(t, x(t)) ≤ g(t, V (t, x(t))) ≤ g(t,m(t)), t ≥ t0

Applying Lemma 3.1, it follows that m(t) ≤ r(t; t0, w0), where w0 = V (t0, x0).

Since V (t0, x0) ≤ a0(t0, d[x0, ô]) < a0(t0, δ) < δ2(t0), hence |r(t; t0, w0)| < ρ, ∀t ≥ t0.
Therefore,

V (tn +
η

2M
,x(tn +

η

2M
)) ≤ r(t; t0, w0)−

n∑

k=0

∫ tk+
η

2M

tk

V ∗(τ, x(τ ))dτ

≤ r(t; t0, w0)− c(
η

2
)
η

2M
n

< ρ− c(
η

2
)
η

2M
n < 0

for n sufficiently large. This is a contradiction and therefore:

lim
t→∞

d[x(t), ô] = 0

The proof is completed.

Theorem 3.4. Let the assumptions (i), (ii) of Theorem 3.2 hold and

(iii’) D+
f V (t, x) + V ∗(t, x) ≤ g(t, V (t, x)), g(., .) as in Theorem 3.3,

V ∗ ∈ C[R+ × S(ρ),R+], V
∗(t, x) ≥ c(d[x, ô]), c(.) ∈ K.

If solution w = 0 of (3.2) is uniformly stable then the trivial solution x = ô of (3.1) is uniformly
asymptotically stable.

Proof. By Theorem 3.2, x = ô of (3.1) is uniformly stable. Hence, for ε = ρ there exists δ0 > 0
such that if t0 ∈ R+, d[x0, ô] < δ0 then

d[x(t; t0, x0), ô] < ρ, t ≥ t0

We can assume that δ0 satisfies if 0 ≤ w0 < b(δ0) then |r(t; t0, w0)| < a(ρ), ∀t ≥ t0. By the
uniformly stability of x = ô, for any ε > 0, there exists δ > 0 such that if d[x0, ô] < δ, t0 ∈ R+ then

d[x(t; t0, x0), ô] < ε, ∀t ≥ t0. Let’s putting T = T (ε) = 1 +
a(ρ)

c(δ)
. Let x(t) = x(t; t0, x0) be any

solution of (3.1), d[x0, ô] < δ0. We will show that d[x(t), ô] < δ for some t∗ ∈ [t0, t0 + T (ε)].

Suppose that d[x(t), ô] ≥ δ, ∀t ∈ [t0, t0 + T (ε)].
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Define m(t) = V (t, x(t)) +
∫ t
t0
V ∗(τ, x(τ ))dτ, t ≥ t0.

By the same argument in the proof of Theorem 3.3, we have m(t) ≤ r(t; t0, w0), t ≥ t0,
where w0 = V (t0, x0) and r(t; t0, w0) be the maximal solution of (3.2). Therefore,

0 ≤ V (t0 + T, x(t0 + T ))

≤ r(t0 + T ; t0, w0)−

∫ t0+T

t0

V ∗(τ, x(τ ))dτ

≤ r(t0 + T ; t0, w0)− Tc(δ)

Since V (t0, x0) ≤ b(d[x0, ô]) < b(δ0), so we have w0 = V (t0, x0) < b(δ0) and hence r(t0+T ; t0, w0) <
a(ρ). Therefore, 0 ≤ V (t0 + T, x(t0 + T )) < a(ρ) − Tc(δ) < 0. This contradiction shows that
there exists t1 ∈ [t0, t0 + T ] such that d[x(t1), ô] < δ. On the other hand, x(t; t1, x(t1; t0, x0)) =
x(t; t0, x0), ∀t ≥ t1, hence,

d[x(t), ô] < ε, ∀t ≥ t0 + T (ε).

This shows that the trivial solution x = ô of (3.1) is uniformly asymptotically stable. The proof is
completed.

Theorem 3.5. Suppose that there exists a function V (t, x) satisfies:

(i) |V (t, x)− V (t, y)| ≤ L(t)d[x, y], ∀(t, x), (t, y) ∈ R+ × S(ρ);

(ii) λ(d[x, ô])p ≤ V (t, x) ≤ Λ(d[x, ô])q

(iii) D+
f V (t, x) ≤ −γ(d[x, ô])q +Ke−δt, t ≥ 0; where λ,Λ, γ,K, p, q, δ are positive numbers.

If δ >
γ

Λ
> 0 then the trivial solution x = ô of (3.1) is uniformly exponentialy stable.

Proof. By Theorem 3.2, x = ô is uniformly stable. Hence, there exists H > 0 such that if t0 ∈ R+
and d[x0, ô] < H then d[x(t; t0, x0), ô] < ρ, ∀t ≥ t0.

Let M =
γ

Λ
,m(t) = V (t, x(t))eM(t−t0), t ≥ t0. We have

d+m(t) ≤MV (t, x(t))eM(t−t0) + eM(t−t0)D+
f V (t, x(t))

≤MV (t, x(t))eM(t−t0) + eM(t−t0)[Ke−δt − γ(d[x, ô])q]

≤MV (t, x(t))eM(t−t0) +Ke(M−δ)(t−t0) −

−
γ

Λ
eM(t−t0)V (t, x(t)) = Ke(M−δ)(t−t0).

Apply Lemma 3.1, m(t) −m(t0) ≤ K
∫ t
t0
e(M−δ)(τ−t0)dτ =

K

M − δ
[e(M−δ)(t−t0) − 1]. By hypothe-

sises, m(t0) = V (t0, x0) ≤ Λ(d[x0, ô])
q, we have

m(t) ≤
K

M − δ
e(M−δ)(t−t0) −

K

M − δ
+ Λ(d[x0, ô])

q

Put δ1 = −(M − δ) > 0, then

m(t) ≤ Λ(d[x0, ô])
q +

K

δ1
−
K

δ1
e−δ1(t−t0) ≤ Λ(d[x0, ô])

q +
K

δ1
, t ≥ t0.
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Therefore V (t, x(t)) ≤ β1(d[x0, ô])e
−M(t−t0), t ≥ t0, where β1(d[x0, ô]) = Λ(d[x0, ô])

q +
K

δ1
. On the

other hand, λ(d[x(t), ô])p ≤ V (t, x(t)), t ≥ t0, we have

d[x(t), ô] ≤ [
β1(d[x0, ô])

λ
]

1

p e
−
M

p
(t−t0)

, t ≥ t0

Denote α =
M

p
, β(d[x0, ô]) = [

β1(d[x0, ô])

λ
]

1

p then

d[x(t), ô] ≤ β(d[x0, ô])e
−α(t−t0), t ≥ t0

This shows that the trivial solution x = ô of (3.1) is uniformly exponentially stable. The proof is
completed.
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